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1. Introduction

Models with extra dimensions have emerged as the most successful candidates for a con-

sistent unified theory of fundamental forces. The most recent formulation of superstring

theory suggests that the five consistent string theories and 11-dimensional supergravity

constitute special points in the moduli space of a more fundamental nonperturbative the-

ory, called M -theory [1]. In models of warped or large extra dimensions, standard model

fields but the graviton are confined to a three-dimensional membrane [2, 3]. The observed

hierarchy between the electroweak and the gravitational coupling constants is naturally

explained by the largeness of the extra dimensions.

The presence of extra dimensions changes drastically our understanding of high-energy

physics and gravitational physics. Gravity in higher dimensions is much different than in

four dimensions. For example, black holes with a fixed mass may have arbitrarily large an-

gular momentum [4]. The uniqueness theorem does not hold, allowing higher-dimensional

black holes with non-spherical topology. A näive analysis suggests that higher-dimensional

black holes should evaporate [5] more quickly than in four dimensions, due to the larger

phase space. Moreover, brane emission should dominate over bulk emission because stan-

dard model fields carry a larger number of d.o.f. than the graviton [6]. However, a black

hole does not radiate exactly as a black body and the emission spectrum depends crucially
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on the structure and dimensionality of the spacetime. A large graviton emissivity could

reverse the above conclusion; if the probability of emitting spin-2 quanta is much higher

than the probability of emitting lower spin quanta, the black hole could evaporate mainly

in the bulk [7]. A conclusive statement on this issue can only be reached if the relative

emissivities of all fields (greybody factors) are known. This is particularly relevant for the

phenomenology of black holes in models of low-energy scale gravity [8, 9]. Unequivocal

detection of subatomic black holes in particle colliders [10] and ultrahigh-energy cosmic

ray observatories [11, 12] is only possible if a consistent fraction of the initial black hole

mass [13, 14] is channeled into brane fields.

If the center-of-mass energy of the event is sufficiently large compared to the Planck

scale, quantum gravitational effects can be neglected and the black hole can be treated

classically. It is commonly accepted that black holes with masses larger than few Planck

masses satisfy this criterion. Under this assumption, if the fundamental gravitational scale

is about a TeV, micro black holes produced at the Large Hadron Collider (center-of-mass

energy = 14 TeV) and in ultrahigh-energy cosmic ray showers (center-of-mass energy & 50

TeV) can be considered classical. Throughout the paper we will assume that this is the

case. (See ref. [12] and references therein for a discussion of the uncertainties deriving from

this assumption.)

The relative emissivities per degree of freedom (d.o.f.) of a classical four-dimensional

non-rotating black hole are 1, 0.37, 0.11 and 0.01 for spin-0, -1/2, -1 and -2, respectively [15].

In that case, the graviton power loss is negligible compared to the loss in other standard

model channels. Since brane fields are constrained in four dimensions, the relative greybody

factors for these fields approximately retain the above values in higher dimensions. The

emission rates for the fields on the brane have been computed in ref. [16]. The graviton

emission is expected to be larger in higher dimensions due to the increase in the number of

its helicity states. The authors have recently calculated the exact absorption cross section,

power and emission rate for gravitons in generic D-dimensions [17]. (See also ref. [18].)

The purpose of this paper is to discuss these results in more detail. The graviton emissivity

is found to be highly enhanced as the spacetime dimensionality increases. Although this

increase is not sufficient to lead to a domination of bulk emission over brane emission, at

least for the standard model, a consistent fraction of the higher-dimensional black hole

mass is lost in the bulk.

The organization of this paper is as follows. In section 2 we fix notations and briefly

review the basics of gravitational perturbations in the higher-dimensional black hole ge-

ometry. In section 3 we derive the field absorption cross sections from the absorption

probabilities. Details of this derivation are included in the appendix. The low-energy

absorption probabilities and the cross sections for spin-0, -1 and -2 fields in generic dimen-

sions are computed in section 4. This derivation is valid for scalars, vectors and gravitons

in the bulk and generalizes previous results [16]. In section 5 we prove that the high-

energy behavior of the cross section is universal and reduces to the capture cross section

for a point particle. Numerical results for the total power and the emission rates for all

known particle species are obtained in section 6. Finally, section 7 contains our conclu-

sions.
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2. Equations and conventions

The formalism to handle gravitational perturbations of a higher-dimensional non-rotating

black hole was developed by Kodama and Ishibashi [19] (hereafter, KI). In this section we

briefly review their main results.

2.1 Number of degrees of freedom of gravitational waves

In four dimensions, gravitational waves have two possible helicities [20], corresponding to

the number of spatial directions transverse to the propagation axis. In generic D dimen-

sions, gravitational waves can be described by a symmetric traceless tensor of rank D − 2,

corresponding to the ¤¤ representation of SO(D − 2). The number of helicities is

N =
(D − 2)(D − 1)

2
− 1 =

D(D − 3)

2
. (2.1)

This representation is decomposed into tensor (T ), vector (V ), and scalar (S) perturbations

on the sphere SD−2. These components correspond to symmetric traceless tensors, vectors

and scalars, respectively. Tensors and vectors are divercenceless on SD−2. The number of

d.o.f. are

NT =

(

(D − 2)(D − 1)

2
− 1

)

− (D − 2) , NV = (D − 2) − 1 , NS = 1 . (2.2)

The perturbations are further expanded in tensor, vector and spherical harmonics on SD−2.

The total number of helicity states is obtained by considering the multiplicities of these

components. A massless particle of spin J in four dimensions has helicities +J and −J ,

corresponding to the projections of the spin along the direction of motion. These states

provide a representation of the little group SO(D − 2) = SO(2), i.e. the group of spa-

tial rotations preserving the particle direction of motion. In four dimensions all massless

particles have two helicities since all non-singlet representations of SO(2) have dimension

two. The description of spin in D dimensions proceeds similarly to the four-dimensional

case. For instance, in five dimensions there are three directions orthogonal to the direction

of motion. The little group is SO(3) and the helicities of the 5-dimensional graviton are

2 , 1 , 0 ,−1 ,−2. For a general discussion, see ref. [21].

2.2 Metric and master equations for gravitational perturbations

The metric of the higher-dimensional non-rotating spherically symmetric black hole is [22, 4]

ds2 = −fdt2 + f−1dr2 + r2dΩ2
D−2 , (2.3)

where

f = 1 −
rH

rD−3
. (2.4)

The mass of the black hole is M = (D − 2)ΩD−2 rH/(16πG), where ΩD−2 is the volume of

the unit (D − 2)-dimensional sphere with line element dΩ2
D−2 and G is Newton’s constant

in D dimensions. Withouth loss of generality, we choose rH = 1. This amounts to rescaling

the radial coordinate and ω. Hereafter, ω stands for ω rH .
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Let us consider weak perturbations of the geometry (2.3) by external fields. If the

field is a scalar, the contribution to the total energy-momentum tensor is negligible. The

evolution for the field is simply given by the Klein-Gordon equation in the fixed back-

ground. The evolution equations for the electromagnetic field were derived by Crispino,

Higuchi and Matsas [23] and more recently by KI in the context of charged black hole

perturbations. According to the KI formalism, the perturbations are divided into vector

and scalar perturbations. The gravitational evolution equations were derived by KI [19]

following earlier work by Regge and Wheeler [24] and Zerilli [25] in four dimensions. The

gravitational perturbations are divided in scalar, vector and tensor perturbations. Tensor

perturbations exist only in D > 4.

The evolution equation for all known fields (scalar, electromagnetic and gravitational)

can be reduced to the second order differential equation

d2Ψ

dr2
∗

+ (ω2 − V )Ψ = 0 , (2.5)

where r is a function of the tortoise coordinate r∗, which is defined by ∂r/∂r∗ = f(r).

With the exception of gravitational scalar perturbations, the potential V in eq. (2.5) can

be written as

V = f(r)

[

l(l + D − 3)

r2
+

(D − 2)(D − 4)

4r2
+

(1 − p2)(D − 2)2

4rD−1

]

. (2.6)

The constant p depends on the field under consideration:

p =



















0 for scalar and gravitational tensor perturbations,

2 for gravitational vector perturbations,

2/(D − 2) for electromagnetic vector perturbations,

2(D − 3)/(D − 2) for electromagnetic scalar perturbations.

(2.7)

For radiative modes, the angular quantum number l takes the integer values

l =











0 , 1 . . . for scalar perturbations,

1 , 2 . . . for electromagnetic perturbations,

2 , 3 . . . for gravitational perturbations.

(2.8)

The potential for gravitational scalar perturbations is

V = f
Q(r)

16r2H(r)2
, (2.9)

where

Q(r) = (D − 2)4(D − 1)2x3 + (D − 2)(D − 1) (2.10)

× {4[2(D − 2)2 − 3(D − 2) + 4]m + (D − 2)(D − 4)(D − 6)(D − 1)}x2

− 12(D − 2){(D − 6)m + (D − 2)(D − 1)(D − 4)}mx + 16m3 + 4D(D − 2)m2 ,

H(r) = m +
1

2
(D − 2)(D − 1)x , m = l(l + D − 3) − (D − 2) , x ≡

1

rD−3
, (2.11)
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and l ≥ 2 has been assumed. In four dimensions, the equations for scalar and vector

perturbations reduce to the Zerilli and Regge-Wheeler equations, respectively. In the limit

l → ∞, eq. (2.5) shows the universal behavior

d2Ψ

dr2
∗

+ (ω2 − f
l2

r2
)Ψ = 0 , l → ∞ . (2.12)

The above equation guarantees that all perturbations behave identically in this limit. The

effective potential for tensor perturbations is equal to the potential of a massless scalar

field in the higher-dimensional Schwarzschild black hole background [26].

Assuming a harmonic wave eiωt and ingoing waves near the horizon, we impose the

boundary condition

Ψ(r) → e−iωr∗ ∼ (r − 1)−iω/(D−3) , r → r+ . (2.13)

At the asymptotic infinity, the wave behavior includes both ingoing and outgoing waves

Ψ(r) → Te−iωr∗ + Reiωr∗ , r∗ → ∞ . (2.14)

The physical picture is a wave with amplitude T scattering on the black hole. Part of

this wave is reflected back with amplitude |R|2 and part is absorbed with probability

|A|2 = (|T |2 − |R|2)/|T |2.

3. From absorption probabilities to absorption cross sections

The rate of absorbed particles for a plane wave of spin s and flux Φs is

dNs

dt
= σsΦs , (3.1)

where σs is the absorption cross section. In eq. (3.1) we sum over all final states and average

over the initial states. The total cross section is obtained by summing the absorption

coefficients for each single mode l, As
l , weighted by the multiplicity factors. For a scalar

field, the result is 1

σs=0(D,ω) = Cs=0(D,ω)
∑

l

Nl S

∣

∣As=0
l,S

∣

∣

2
, (3.2)

where the normalization factor is

Cs=0(D,ω) =

(

2π

ω

)D−2 1

ΩD−2
=

(4π)(D−3)/2Γ[(D − 1)/2]

ωD−2
, (3.3)

and the multiplicities of the scalar spherical harmonics are

Nl S =
(2l + D − 3)(l + D − 4)!

l!(D − 3)!
. (3.4)

1See, for example, ref. [27] for the four-dimensional case and the appendix and ref. [28, 9] for its D-

dimensional generalization.

– 5 –



J
H
E
P
0
2
(
2
0
0
6
)
0
2
1

Equation (3.3) follows from the decomposition of a plane wave in spherical waves. In four

dimensions, eq. (3.4) gives the well-known result Nl S = 2l + 1.

Spherical harmonics and partial wave expansion are different for vector and tensor

fields. This leads to different expressions for the normalization and multiplicity factors.

(This fact has been overlooked in the literature. See, for instance, refs. [9].)

Consider a vector field V µ in the transverse gauge. The decomposition of a transverse

plane wave in spherical waves gives the factor (see the appendix and ref. [23])

Cs=1(D,ω) =
Cs=0(D,ω)

D − 2
. (3.5)

Following KI, we first decompose V µ in the divergence of a scalar field plus a divergenceless

vector. These components are then expanded in scalar and vector spherical harmonics. The

multiplicities of the scalar harmonics are given by eq. (3.4). The multiplicities of the vector

harmonics are

Nl V =
l(l + D − 3)(2l + D − 3)(l + D − 5)!

(l + 1)!(D − 4)!
. (3.6)

The cross section is

σs=1 = Cs=1(D,ω)
∑

l

[

Nl S

∣

∣As=1
l S

∣

∣

2
+ Nl V

∣

∣As=1
l V

∣

∣

2
]

. (3.7)

Finally, let us consider the graviton field. The decomposition of a plane wave in spherical

waves yields the normalization factor (see the appendix for details)

Cs=2(D,ω) =
2

D(D − 3)
Cs=0(D,ω) . (3.8)

The gravitational perturbation is first decomposed in scalar, vector and tensor components

on the tangent space of SD−2. These components are then expanded in scalar, vector and

tensor harmonics. The corresponding multiplicities are Nl S , Nl V and [29]

Nl T =
1

2

(D − 1)(D − 4)(l + D − 2)(l − 1)(2l + D − 3)(l + D − 5)!

(l + 1)!(D − 3)!
, (3.9)

respectively. The graviton absorption cross section is

σs=2 = Cs=2(D,ω)
∑

l

[

Nl S

∣

∣As=2
l S

∣

∣

2
+ Nl V

∣

∣As=2
l V

∣

∣

2
+ Nl T

∣

∣As=2
l T

∣

∣

2
]

. (3.10)

Note that in D = 4, accidentally, the conversion factors do not depend on the spin. The

four-dimensional cross sections read

σs(4, ω) =
π

ω2

∑

l

(2l + 1)|As
l |

2 , s = 0, 1, 2 . (3.11)

(See also the discussion in section 5 below.)
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4. Low-energy absorption probabilities

Since low frequencies (ω ¿ 1) give a substantial contribution to the total power emission,

it is worthwhile to derive an analytical expression for this limiting case. The low-energy

approximation uses a matching procedure to find a solution on the whole spacetime for any

value of p. Let us define the near-horizon region r − 1 ¿ 1/ω and the asymptotic region

r À 1. To solve the wave equation in the near-horizon region, we set

Ψ = rβ0/2 Ξ , (4.1)

where β0 = (D − 2)(p + 1). With this substitution, the wave equation (2.5) is cast in the

form

f

rβ0
∂r

(

frβ0

∂rΞ
)

+

[

ω2 +
f

r2

(

−l(l + D − 3) +
p(D − 3)(D − 2)

2
+

p2(D − 2)2

4

)

]

Ξ = 0 .

(4.2)

Changing variables to

v = 1 −
1

rD−3
, (4.3)

eq. (4.2) reads

(1−v)2v2(3−D)2∂2
vΞ−(3−D)v(1−v)2

(

p(D − 2)v

(1 − v)
− (3 − D)

)

∂vΞ+
(

(ωr)2 + va
)

Ξ = 0 ,

(4.4)

where

a = −l(l + D − 3) +
p(D − 3)(D − 2)

2
+

p2(D − 2)2

4
. (4.5)

This equation can be put in a standard hypergeometric form by defining

ph =
p(D − 2)

D − 3
, ωh =

ω

D − 3
, ah =

a

(D − 3)2
, (4.6)

and setting

Ξ = vc1(1 − v)c2F , (4.7)

c1 = −iωh , (4.8)

c2 =
1

2
(1 + ph − b) =

1

2

β0 − 1 − (D − 3)b

D − 3
, (4.9)

b =
√

(1 + ph)2 − 4ah − 4ω2
h =

1

D − 3

√

(D + 2l − 3)2 − 4ω2 . (4.10)

The result is

v(1 − v)∂2
vF + (γ − v(1 + α + β)) ∂vF − αβF = 0 , (4.11)

where

γ = 1 − 2iωh , α =
1

2
(1 − ph − 2iωh − b) , β =

1

2
(1 + ph − 2iωh − b) . (4.12)
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The most general solution of eq. (4.11) in the neighborhood of v = 0 is

F = AF (α, β, γ, v) + B v1−γF (α − γ + 1, β − γ + 1, 2 − γ, v) . (4.13)

Since the second term describes an outgoing wave near the horizon, we set B = 0. The

asymptotic behavior of the near-horizon solution is

Ξ ∼ r−2iω−(β0−1)−(D−3)b/2 ×
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
+ r−(β0−1)+(D−3)b/2 Γ(γ)Γ(γ − α − β)

Γ(γ − α)Γ(γ − β)
,

(4.14)

where we have used the property of the hypergeometric functions:

F (α, β, γ, v) = (1−v)γ−α−β × Γ(γ)Γ(α+β−γ)
Γ(α)Γ(β) F (γ − α, γ − β, γ−α−β+1, 1−v)

+Γ(γ)Γ(γ−α−β)
Γ(γ−α)Γ(γ−β) F (α, β,−γ+α+β+1, 1−v) . (4.15)

In the asymptotic region, eq. (4.2) can be written as

∂2
rΞ +

β0

r
∂rΞ +

[

ω2 +
f

r2

(

−l(l + D − 3) +
p(D − 3)(D − 2)

2
+

p2(D − 2)2

4

)

]

Ξ = 0 .

(4.16)

The solution of this equation is

Ξ = C1r
(1−β0)/2Jb̂/2(ωr) + C2r

(1−β0)/2Yb̂/2(ωr) , (4.17)

where b̂ =
√

(1 − β0)2 − 4a. Expanding Ξ for small ωr, we obtain

Ξ ∼ C1
(ω/2)b̂/2

Γ(1 + b̂/2)
r(1−β0+b̂)/2 − C2

(2/ω)b̂/2Γ(b̂/2)

π
r(1−β0−b̂)/2 . (4.18)

Equation (4.18) is matched to eq. (4.14). As (D − 3)b ∼ b̂ for ω ¿ 1, we find

Γ(γ − α − β)Γ(α)Γ(β)

Γ(α + β − γ)Γ(γ − α)Γ(γ − β)
= −

C1

C2

π(ω
2 )b̂

Γ(1 + b̂
2)Γ( b̂

2 )
, (4.19)

C1

C2
= −

(

2

ω

)D+2l−3 Γ
(

l + D−3
2

)2 (

l + D−3
2

)

Γ(γ − α − β)Γ(α)Γ(β)

πΓ(α + β − γ)Γ(γ − α)Γ(γ − β)
, (4.20)

C1

C2
= −

(

2

ω

)D+2l−3

× (4.21)

Γ
(

l + D−3
2

)2 (

l + D−3
2

)

Γ
(

1 + 2l
D−3

)2
Γ(β)2

(

1 + 2l
D−3

)

sin πβ sin 2lπ
D−3

π2α2 sin παΓ(−α)2
.

It is straightforward to show that the reflection coefficient is

R =
R

T
=

C1 − iC2

C1 + iC2
. (4.22)
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Therefore, the absorption probability in the ω ¿ 1 approximation is

|A|2 = 1 − |R|2 = 4π
(ω

2

)D+2l−2 Γ
(

1 + 2l+p(D−2)
2(D−3)

)2
Γ

(

1 + 2l−p(D−2)
2(D−3)

)2

Γ
(

1 + 2l
D−3

)2
Γ

(

l + (D−1)
2

)2 . (4.23)

The result for the scalar waves [16] are obtained by setting p = 0 and l = 0 , 1 . . .. Setting

p = 0 (2) and l = 2 , 3 . . . we obtain the low-energy absorption probability for the gravita-

tional tensor (vector) perturbations. The gravitational scalar perturbation cannot be dealt

analytically. Numerical results give

pgrav scalar ∼ 2 + 0.674D−0.5445 . (4.24)

Using eqs. (3.4), (3.6), (3.8), (3.9) and (4.23) it is straightforward to compute the low-energy

absorption cross section for the gravitational waves. For instance, recalling that the four-

dimensional absorption probabilities of scalar and vector perturbations are equal [30] and

the tensor contribution vanishes, the contribution of the l = 2 mode in four dimensions is

σl =
4π

45
ω4 . (4.25)

This result agrees with the well-known result of ref. [15].

5. High-energy absorption cross sections

The wave equation can also be solved in the high-energy limit, where the absorption cross

section is expected to approximate the cross section for particle capture. This has been

verified in a number of papers for the scalar field. (See ref. [9] and references therein.) We

will now extend this result to spin-1 and -2 fields in any dimension D. In the high-l limit,

the multiplicities satisfy the relations

Nl ,S =
1

D − 2
[Nl ,S + Nl ,V ] =

2

D(D − 3)
[Nl ,S + Nl ,V + Nl ,T ] , l → ∞ , D > 2 .

(5.1)

The above relations also hold for any l when D = 4. In that case, Chandrasekhar [30]

showed that Al S = Al V for any l and Nl T (4, 2) = 0. Therefore, in four dimensions the

cross section does not depend on the particle spin.

Since high frequencies can easily penetrate the gravitational potential barrier, the

absorption probabilities of all fields, |A(D, l, ω)|2, tend to 1 as ω → ∞. A WKB analysis

shows that the absorption probability is nonzero for l . ω. Therefore, the cross section in

the high-energy limit must include the contribution from all l . ω. The largest contribution

to the cross section when ω → ∞ is given by high-l modes. Since the high-l limit of the wave

equation is independent of the kind of perturbation (see section 2.2), the wave equation

takes a universal form in this limit, i.e. Al S = Al V = Al T . From eqs. (3.5)–(3.10) and (5.1)

it follows that the absorption cross sections for spin-0, -1 and -2 fields is equal in the limit

ω → ∞.

– 9 –
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6. Total energy emission

The total energy flux for gravitational waves is

dE

dt
=

dES

dt
+

dEV

dt
+

dET

dt
=

∑

l

∫

dω

2π

ω

eω/TH −1

(

Nl S |A
s=2
l S |2 + Nl V |A

s=2
l V |2 + Nl T |A

s=2
l T |2

)

,

(6.1)

where the Hawking temperature is TH = (D − 3)/(4π) and the counting of helicities is

included in the multiplicity factors. The total absorption probabilities can be computed

numerically. Equation (2.5) is integrated from a point near the horizon (typically r − 1 ∼

10−6), where the field behavior is given by eq. (2.13). The numerical result is then compared

to eq. (2.14) at large r. A better accuracy is achieved by considering the next-to-leading

order correction terms [31]

Ψ(r) → T
(

1 +
ε

r

)

e−iωr∗ + R
(

1 −
ε

r

)

eiωr∗ , r∗ → ∞ , (6.2)

where

ε = −i
l(l + D − 3) + (D − 2)(D − 4)/4

2ω
. (6.3)

The emission rates and the total integrated power for various fields are summarized in

tables 1-3. For sake of comparison with previous works, the values for lower-spin fields

are taken from ref. [9]. (We checked these results with our numerical codes and found

agreement within numerical uncertainties.) The results in the tables are normalized to the

four-dimensional values. In four dimensions, the radiated power P is

Ps=0 = 2.9 × 10−4 r−2
+ , Ps=1/2 = 1.6 × 10−5 r−2

+ ,

Ps=1 = 6.7 × 10−5 r−2
+ , Ps=2 = 1.5 × 10−5 r−2

+ . (6.4)

The spin-0, -1/2 and -1 values are per d.o.f., whereas the graviton value includes the

contribution of the two helicities.2 The four-dimensional emission rates are

Rs=0 = 1.4 × 10−3 r−1
+ , Rs=1/2 = 4.8 × 10−4 r−1

+ ,

Rs=1 = 1.5 × 10−4 r−1
+ , Rs=2 = 2.2 × 10−5 r−1

+ . (6.5)

The above values for fermions, bosons and graviton agree with Page’s results (See table I

in ref. [15]). Some features of the numerical results of table 1 are worth discussing:

• The relative contributions of the higher partial waves increase with D. For instance,

in four dimensions the contribution of the l = 2 mode is two orders of magnitude

larger than the contribution of the l = 3 mode. The l = 2 and l = 3 contributions

are roughly equal in D = 8. More energy is channeled in l = 3 mode than in l = 2

mode for D ≥ 9. (The largest tensor contribution in ten dimensions comes from

the l = 4 mode.) Contributions from high l are needed to obtain accurate results

for large D. For instance, in ten dimensions the first 10 modes must be considered

for a meaningful result. Therefore, precise values for very large D require the most

CPU-time. The values in table 1 have a 5% accuracy.

2Since the number of graviton d.o.f. (helicities) depends on the spacetime dimensionality D, here and

throughout the paper we give the total rate and the total power for the graviton field, rather than the rate

and power per d.o.f.
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D 4 5 6 7 8 9 10 11

Scalars 1 8.94 36 99.8 222 429 749 1220

Fermions 1 14.2 59.5 162 352 664 1140 1830

Gauge Bosons 1 27.1 144 441 1020 2000 3530 5740

Gravitons 1 103 1036 3374 2 × 104 5.2 × 104 2.5 × 105 8 × 105

Table 1: Total radiated power P into different channels. The first three rows correspond to fields

propagating on the brane. The last row gives the power radiated in bulk gravitons normalized to

the four-dimensional case.

D 4 5 6 7 8 9 10 11

Scalars 1 1 1 1 1 1 1 1

Fermions 0.55 0.87 0.91 0.89 0.87 0.85 0.84 0.82

Gauge Bosons 0.23 0.69 0.91 1.0 1.04 1.06 1.06 1.07

Gravitons 0.053 0.61 1.5 1.8 4.8 6.4 17.7 34.7

Table 2: Fraction of radiated power per d.o.f. normalized to the scalar field. The graviton d.o.f.

(number of helicity states) are included in the results.

D 4 5 6 7 8 9 10 11

Scalars 1 1 1 1 1 1 1 1

Fermions 0.37 0.7 0.77 0.78 0.76 0.74 0.73 0.71

Gauge Bosons 0.11 0.45 0.69 0.83 0.91 0.96 0.99 1.01

Gravitons 0.02 0.2 0.6 1.6 1.9 2.6 5.1 7.6

Table 3: Fraction of emission rates per d.o.f. normalized to the scalar field. The graviton result

includes all the helicity states and counts as one d.o.f.

• The total power radiated in gravitons increases more rapidly with D than the power

radiated in lower-spin fields. This is due to the increase in the multiplicity of the

tensor perturbations, which is larger than the scalar multiplicity by a factor D2 at

high D. Therefore, the main contribution to the total power comes from tensor (and

vector) modes. For instance, in ten dimensions the tensor modes contribute roughly

half of the total power output.

Table 2 gives the fraction of radiated power per d.o.f. normalized to the scalar field. In

four dimensions, the graviton channel is only about 5% of the scalar channel. There-

fore, the power loss in gravitons is negligible compared to the power loss in lower-spin

fields. This conclusion is reversed in higher dimensions. For instance, the graviton loss

is about 35 times higher than the scalar loss in D = 11. Graviton emission is ex-

pected to dominate the black hole evaporation at very high D. The particle emission

rates per d.o.f. are shown in table 3. The relative emission rates of different fields can

be obtained by summing on the brane d.o.f. For instance, the relative emission rates

of standard model charged leptons (12 d.o.f.) and a 11-dimensional bulk graviton are

roughly 1:1. This ratio becomes ∼ 40:1 in five dimensions. To illustrate the relevance

of these results for black hole in particle colliders, let us consider the minimal U(1) ×
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D 4 5 6 7 8 9 10 11

Scalars 6.8 4.0 3.7 3.6 3.6 3.6 3.3 2.9

Fermions 83.8 78.7 75.0 72.9 69.9 68.1 61.6 53.4

Gauge Bosons 9.3 16.7 20.0 21.8 22.3 22.6 20.7 18.6

Gravitons 0.1 0.6 1.3 1.7 4.2 5.7 14.4 25.1

Table 4: Percentage of power going into each field species for the minimal U(1)×SU(2)×SU(3)

standard model with three families and one Higgs field above the spontaneous symmetry breaking

scale. The four-dimensional results are taken from ref. [15] and the higher dimensional results for

fermions and gauge fields are taken from ref. [9].

SU(2) × SU(3) standard model with three families and one Higgs field on a thin brane

with fundamental Planck scale = 1 TeV. For black holes with mass ∼ few TeV the

Hawking temperature is generally above 100 GeV. The temperature of a six-dimensional

black hole with mass equal to 5 (100) TeV is ∼ 282 (133) GeV. The temperature in-

creases with the spacetime dimension at fixed mass. Therefore, all d.o.f. can be consid-

ered massless. (Considering massive gauge bosons does not affect the conclusions signif-

icantly.) The spin-0, -1/2 and -1 d.o.f. on the brane are 4 (complex Higgs doublet), 90

(quarks + charged leptons + neutrinos) and 24 (massless gauge bosons), respectively.

The relative emissivities for this model are shown in table 4. Although the graviton

emission is highly enhanced, the large number of brane d.o.f. implies that the brane

channel dominates on the bulk channel. However, power loss in the bulk is significant

and cannot be neglected at high D; about 1/4 of the initial black hole mass is lost in

the 11-dimensional bulk. This implies a larger-than-expected missing energy in particle

colliders.

7. Conclusions

In this paper we have computed the absorption cross section and the total power carried by

gravitons in the evaporation process of a higher-dimensional non-rotating black hole. We

find that the power loss in the graviton channel is highly enhanced in higher-dimensional

spacetimes. This has important consequences for the detection of microscopic black hole

formation in particle colliders and ultrahigh-energy cosmic ray observatories, where a larger

bulk emission implies larger missing energies and lower multiplicity in the visible channels.

Despite the increase in graviton emissivity, for 4 < D ≤ 11 a non-rotating black hole in

the Schwarzschild phase will emit mostly on the brane due to the higher number of brane

d.o.f.3 However, black hole energy loss in the bulk cannot be neglected in presence of extra

dimensions. Graviton emission is expected to dominate the black hole evaporation at very

high D.

3This conclusion holds only if the particle content at TeV energies is mostly made of fields propagating

on the brane. If non-standard model d.o.f. open up at the TeV scale, such as vector multiplets propagating

in the bulk, black hole emission could occur mostly in the bulk.
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A. Derivation of the cross sections

In this appendix we derive in detail the cross sections for spin-0, -1 and -2 fields in generic

dimensions. The harmonic expansion is performed on the spherical manifold Sn with

metric γab and coordinates ya (a = 1, . . . , n = D−2). We also define the set of coordinates

xi = (r, ya). In the limit r → ∞ the wave vector of a massless particle is

kµ = (ω,~k) , (A.1)

where ~k = (ki) = ωk̂. The direction of the plane wave is given by the (n + 1)-dimensional

unit vector k̂.

Scalar perturbations. Let us consider an incoming scalar plane wave φ(k̂,ω) with unit

flux and wave vector ~k = ωk̂ at infinity:

φ(k̂,ω) → e−iωt−i~k~x . (A.2)

This wave can be expanded in spherical waves Ψ(λ,ω) parametrized by a discrete index λ:

φ(k̂,ω) =
∑

λ

α(k̂, ω;λ)Ψ(λ,ω) . (A.3)

In general, λ = (l,m). However, we leave the index implicit to simplify the generalization

to higher spins. The asymptotic behavior of the fields Ψ is

Ψ(λ,ω) →
e−iωt−iωr

rn/2
Y (λ) , (A.4)

where the spherical harmonics, Y (λ), satify the normalization and orthogonality conditions
∫

dΩnY (λ)Y (λ′) = δλλ′

. (A.5)

From the above equations it follows

rn

∫

dΩnΨ∗(λ,ω)Ψ(λ,ω) = 1 , (A.6)

i.e. the wave Ψ(λ,ω) describes one ingoing particle per unit time. If As=0(λ, ω) is the

absorption coefficient for a spherical wave with angular profile Y (λ), the cross section

associated to the plane wave (k̂, ω) is

σk̂,ω =
∑

λ

|α(k̂, ω;λ)|2|As=0(ω, λ)|2 . (A.7)
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The average on the wave direction of the initial state is obtained by integrating k̂ over the

sphere and dividing by the unit volume Ωn:

σ =
1

Ωn

∑

λ

∫

dΩ(k̂)
n |α(k̂, ω;λ)|2|As=0(ω, λ)|2 . (A.8)

From the previous equation, we obtain

Cs=0(n + 2, ω) =
1

Ωn

∫

dΩ(k̂)
n |α(k̂, ω;λ)|2 . (A.9)

The coefficients α are given by the coefficients of the expansion

φ̃(k̂,ω) =
∑

λ

α(k̂, ω;λ)Ψ̃(λ,ω) , (A.10)

where

Ψ̃(λ,ω) ≡
e−iωt−iωr

rn/2
Y (λ) , φ̃(k̂,ω) ≡ e−iωt−i~k~x , (A.11)

are defined in the flat (n + 1)-dimensional Euclidean space. From

∫

dn+1xΨ̃∗(λ′,ω′)Ψ̃(λ,ω) = 2πδ(ω − ω′)δλλ′ (A.12)

it follows

(2π)2δ(ω − ω′)δ(ω′ − ω′′)|α(k̂, ω;λ)|2 =

=

∫

dn+1xdn+1x′Ψ̃∗(λ,ω)(x)φ̃(k̂,ω′)(x)φ̃∗(k̂,ω′)(x′)Ψ̃(λ,ω′′)(x′) . (A.13)

Multiplying by ω′n and integrating in dΩ
(k̂)
n dω′, we obtain

ωn(2π)2δ(ω − ω′′)

∫

dΩ(k̂)
n |α(k̂, ω;λ)|2

=

∫

dn+1xdn+1x′Ψ̃∗(λ,ω)(x)Ψ̃(λ,ω′′)(x′)

[∫

dω′ω′n

∫

dΩ(k̂)
n e−i~k(~x−~x′)

]

= (2π)n+1

∫

dn+1xdn+1x′δ(~x − ~x′)Ψ̃∗(λ,ω)(x)Ψ̃(λ,ω′′)(x′) = (2π)n+2δ(ω − ω′′) .

(A.14)

Finally, the normalization factor is

Cs=0(n + 2, ω) =
1

Ωn

∫

dΩ(k̂)
n |α(k̂, ω;λ)|2 =

1

Ωn

(

2π

ω

)n

. (A.15)

Vector perturbations. Let us consider an incoming transverse vector plane wave φ
(p,k̂,ω)
µ

with unit flux and wave vector at infinity:

φ(p,k̂,ω)
µ → e−iωt−i~k~x

(

0

εp
i (k̂)

)

, (A.16)
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where εp
i (k̂) are the transverse polarization vectors (p = 1, . . . , n) and

k̂iεp
i = 0 , εp

i ε
p′

j δij = δpp′ ,

n
∑

p=1

εp
i ε

p
j = δij + terms in ki, kj . (A.17)

We assume xi to be asymptotically Euclidean coordinates for simplicity. The wave can be

expanded in spherical waves Ψ(λ,ω) parametrized by a discrete index λ, which includes the

polarizations:

φ(p,k̂,ω)
µ =

∑

λ

α(p, k̂, ω;λ)Ψ(λ,ω)
µ . (A.18)

The asymptotic fields Ψµ are

Ψ(λ,ω)
µ →

e−iωt−iωr

rn/2







0

0

rY
(λ)
a






, (A.19)

where Y
(λ)
a satisfy the normalization and orthogonality conditions

∫

dΩnY (λ)
a Y

(λ′)
b γab = δλλ′

. (A.20)

From the above equation it follows

rn

∫

dΩnΨ∗(λ,ω)
µ Ψ(λ,ω)

µ gµν = 1 , (A.21)

i.e. a wave Ψ
(λ,ω)
µ describes one ingoing particle per unit time. If As=1(λ, ω) is the absorp-

tion coefficient for a spherical wave with angular profile Y
(λ)
a , the cross section associated

to the plane wave (p, k̂, ω) is

σp,k̂,ω =
∑

λ

|α(p, k̂, ω;λ)|2|As=1(ω, λ)|2 . (A.22)

The average on the wave direction and polarization of the initial state is obtained by

summing on p, integrating k̂ over the sphere and dividing by the unit volume Ωn and the

number of polarizations n:

σ =
1

nΩn

∑

λ

∫

dΩ(k̂)
n

n
∑

p=1

|α(p, k̂, ω;λ)|2|A(ω,λ)|2 . (A.23)

From the previous equation, we obtain

Cs=1(n + 2, ω) =
1

nΩn

∫

dΩ(k̂)
n

n
∑

p=1

|α(p, k̂, ω;λ)|2 . (A.24)

The coefficients α are the coefficients of the expansion

φ̃(p,k̂,ω)
µ =

∑

λ

α(p, k̂, ω;λ)Ψ̃(λ,ω)
µ , (A.25)
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where

Ψ̃
(λ,ω)
i ≡

e−iωt−iωr

rn/2

(

0

rY
(λ)
a

)

, φ̃
(p,k̂,ω)
i ≡ e−iωt−i~k~xεp

i (k̂) , (A.26)

are defined in the flat (n + 1)-dimensional Euclidean space. From
∫

dn+1xΨ̃
∗(λ′,ω′)
i Ψ̃i(λ,ω) = 2πδ(ω − ω′)δλλ′ (A.27)

it follows

(2π)2δ(ω − ω′)δ(ω′ − ω′′)|α(p, k̂, ω;λ)|2 =

=

∫

dn+1xdn+1x′Ψ̃
∗(λ,ω)
i (x)φ̃i(p,k̂,ω′)(x)φ̃

∗(p,k̂,ω′)
j (x′)Ψ̃j(λ,ω′′)(x′) . (A.28)

Multiplying by ω′n, summing over p and integrating in dΩ
(k̂)
n dω′, we obtain

ωn(2π)2δ(ω − ω′′)

∫

dΩ(k̂)
n

n
∑

p=1

|α(p, k̂, ω;λ)|2 =

=

∫

dn+1xdn+1x′Ψ̃
∗(λ,ω)
i (x)Ψ̃j(λ,ω′′)(x′) ×

×





∫

dω′ω′n

∫

dΩ(k̂)
n





n
∑

p=1

εi(p)(k̂)ε
∗(p)
j (k̂)



 e−i~k(~x−~x′)





= (2π)n+1

∫

dn+1xdn+1x′δ(~x − ~x′)Ψ̃
∗(λ,ω)
i (x)Ψ̃j(λ,ω′′)(x′)

(

δi
j + terms in ki, kj

)

= (2π)n+2δ(ω − ω′′) . (A.29)

Finally, the normalization factor is

Cs=1(n + 2, ω) =
1

nΩn

∫

dΩ(k̂)
n

n
∑

p=1

|α(p, k̂, ω;λ)|2 =
1

nΩn

(

2π

ω

)n

. (A.30)

Gravitational perturbations. In our normalizations, a spin-two field Φµν has number

flux Φ∗
µνΦ

µν . (This choice is possible because the waves are monocromatic, i.e. ∼ eiωt.) If

Φµν is multiplied by a suitable factor, it can be interpreted as a metric perturbation hµν .

The multiplication factor depends on ω and ~, but its explicit form is not relevant in the

derivation of the cross section. An incoming transverse spin-two plane wave φ
(p,k̂,ω)
µν with

unit flux and wave vector at infinity ~k = ωk̂ is

φ(p,k̂,ω)
µν → e−iωt−i~k~x

(

0 0

0 εp
ij(k̂)

)

, (A.31)

where εp
ij(k̂) are the transverse traceless polarization vectors, p = 1, . . . N = (n−1)(n+2)/2

and

k̂iεp
ij = 0 , εp

ijε
p′

klδ
ikδjl = δpp′ ,

N
∑

p=1

εp
ijε

p kl = δk
(iδ

l
j) −

1

n
δijδ

kl + terms in ki, kj , k
k, kl .

(A.32)
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This wave can be expanded in spherical waves Ψ
(λ,ω)
µν

φ(p,k̂,ω)
µν =

∑

λ

α(p, k̂, ω;λ)Ψ(λ,ω)
µν . (A.33)

The asymptotic fields Ψµν are

Ψ(λ,ω)
µν →

e−iωt−iωr

rn/2







0

0
0

0 r2Y
(λ)
ab






, (A.34)

where Y
(λ)
ab satisfy the normalization and orthogonality conditions

∫

dΩnY
(λ)
ab Y

(λ′)
cd γacγbd = δλλ′

. (A.35)

From the above equation it follows

rn

∫

dΩnΨ∗(λ,ω)
µν Ψ(λ,ω) µν = 1 , (A.36)

i.e. a wave Ψ
(λ,ω)
µν describes one ingoing particle per unit time. If As=2(λ, ω) is the absorp-

tion coefficient for a spherical wave with angular profile Y
(λ)
ab , the cross section associated

to the plane wave (p, k̂, ω) is

σp,k̂,ω =
∑

λ

|α(p, k̂, ω;λ)|2|As=2(ω, λ)|2 . (A.37)

The average on the wave direction and polarization of the initial state is obtained by

summing on p, integrating k̂ on the sphere and dividing by the unit volume Ωn and the

number of polarizations N :

σ =
1

NΩn

∑

λ

∫

dΩ(k̂)
n

N
∑

p=1

|α(p, k̂, ω;λ)|2|A(ω,λ)|2 . (A.38)

From the previous equation, we obtain

Cs=2(n + 2, ω) =
1

NΩn

∫

dΩ(k̂)
n

N
∑

p=1

|α(p, k̂, ω;λ)|2 . (A.39)

The coefficients α are the coefficients of the expansion

φ̃(p,k̂,ω)
µν =

∑

λ

α(p, k̂, ω;λ)Ψ̃(λ,ω)
µν , (A.40)

where

Ψ̃
(λ,ω)
ij ≡

e−iωt−iωr

rn/2

(

0 0

0 r2Y
(λ)
ab

)

, φ̃
(p,k̂,ω)
ij ≡ e−iωt−i~k~xεp

ij(k̂) (A.41)
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are defined in the flat (n + 1)-dimensional Euclidean space. From

∫

dn+1xΨ̃
∗(λ′,ω′)
ij Ψ̃ij(λ,ω) = 2πδ(ω − ω′)δλλ′ , (A.42)

it follows

(2π)2δ(ω − ω′)δ(ω′ − ω′′)|α(p, k̂, ω;λ)|2 =

=

∫

dn+1xdn+1x′Ψ̃
∗(λ,ω)
ij (x)φ̃ij(p,k̂,ω′)(x)φ̃

∗(p,k̂,ω′)
kl (x′)Ψ̃kl(λ,ω′′)(x′) . (A.43)

Multiplying by ω′n, summing over p and integrating in dΩ
(k̂)
n dω′, we obtain

ωn(2π)2δ(ω − ω′′)

∫

dΩ(k̂)
n

N
∑

p=1

|α(p, k̂, ω;λ)|2

=

∫

dn+1xdn+1x′Ψ̃
∗(λ,ω)
ij (x)Ψ̃kl(λ,ω′′)(x′) ×

×





∫

dω′ω′n

∫

dΩ(k̂)
n





N
∑

p=1

εij(p)(k̂)ε
∗(p)
kl (k̂)



 e−i~k(~x−~x′)





= (2π)n+1

∫

dn+1xdn+1x′δ(~x − ~x′)Ψ̃
∗(λ,ω)
ij (x)Ψ̃kl(λ,ω′′)(x′) ×

×

(

δ
(i
k δ

j)
l −

1

n
δijδkl + terms in ki, kj , kk, kl

)

= (2π)n+2δ(ω − ω′′) . (A.44)

Finally, the normalization factor is

Cs=2(n + 2, ω) =
1

NΩn

∫

dΩ(k̂)
n

N
∑

p=1

|α(p, k̂, ω;λ)|2 =
1

NΩn

(

2π

ω

)n

. (A.45)
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[12] E.-J. Ahn and M. Cavaglià, Simulations of black hole air showers in cosmic ray detectors,

hep-ph/0511159.

[13] D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions,

Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034];

E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06

(2002) 057 [gr-qc/0203093];

V.P. Frolov and D. Stojkovic, Black hole radiation in the brane world and recoil effect, Phys.

Rev. D 66 (2002) 084002 [hep-th/0206046];

V.P. Frolov and D. Stojkovic, Black hole as a point radiator and recoil effect on the brane

world, Phys. Rev. Lett. 89 (2002) 151302 [hep-th/0208102];

H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high- energy

particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003];

H. Yoshino and V.S. Rychkov, Improved analysis of black hole formation in high-energy

particle collisions, Phys. Rev. D 71 (2005) 104028 [hep-th/0503171].

[14] V. Cardoso and J.P.S. Lemos, Gravitational radiation from collisions at the speed of light: a

massless particle falling into a Schwarzschild black hole, Phys. Lett. B 538 (2002) 1

[gr-qc/0202019];

V. Cardoso and J.P.S. Lemos, The radial infall of a highly relativistic point particle into a

kerr black hole along the symmetry axis, Gen. Rel. Grav. 35 (2003) 327 [gr-qc/0207009];

Gravitational radiation from the radial infall of highly relativistic point particles into kerr

black holes, Phys. Rev. D 67 (2003) 084005 [gr-qc/0211094].

[15] D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged,

nonrotating hole, Phys. Rev. D 13 (1976) 198;

See also D.N. Page, Particle emission rates from a black hole, II. Massless particles from a

rotating hole, Phys. Rev. D 14 (1976) 3260.

[16] P. Kanti and J. March-Russell, Calculable corrections to brane black hole decay, I. The scalar

case, Phys. Rev. D 66 (2002) 024023 [hep-ph/0203223]; Calculable corrections to brane black

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB529%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB529%2C1
http://xxx.lanl.gov/abs/hep-ph/0201139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C043004
http://xxx.lanl.gov/abs/hep-ph/0306008
http://xxx.lanl.gov/abs/hep-ph/0311318
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C22%2C377
http://xxx.lanl.gov/abs/hep-ph/0312249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C22%2C399
http://xxx.lanl.gov/abs/hep-ph/0405056
http://jhep.sissa.it/stdsearch?paper=06%282005%29065
http://xxx.lanl.gov/abs/hep-ph/0410358
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C024003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C024003
http://xxx.lanl.gov/abs/hep-ph/0504234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APHYE%2C24%2C438
http://xxx.lanl.gov/abs/astro-ph/0506698
http://xxx.lanl.gov/abs/hep-ph/0511159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C044011
http://xxx.lanl.gov/abs/gr-qc/0201034
http://jhep.sissa.it/stdsearch?paper=06%282002%29057
http://jhep.sissa.it/stdsearch?paper=06%282002%29057
http://xxx.lanl.gov/abs/gr-qc/0203093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C084002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C084002
http://xxx.lanl.gov/abs/hep-th/0206046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C89%2C151302
http://xxx.lanl.gov/abs/hep-th/0208102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C024009
http://xxx.lanl.gov/abs/gr-qc/0209003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C104028
http://xxx.lanl.gov/abs/hep-th/0503171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB538%2C1
http://xxx.lanl.gov/abs/gr-qc/0202019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C35%2C327
http://xxx.lanl.gov/abs/gr-qc/0207009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C084005
http://xxx.lanl.gov/abs/gr-qc/0211094
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD13%2C198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD14%2C3260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C024023
http://xxx.lanl.gov/abs/hep-ph/0203223


J
H
E
P
0
2
(
2
0
0
6
)
0
2
1

hole decay, II. Greybody factors for spin 1/2 and 1, Phys. Rev. D 67 (2003) 104019

[hep-ph/0212199];

D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders: greybody factors for

brane fields, Phys. Rev. D 67 (2003) 064025 [hep-th/0212108];

C.M. Harris and P. Kanti, Hawking radiation from a (4+n)-dimensional black hole: exact

results for the Schwarzschild phase, JHEP 10 (2003) 014 [hep-ph/0309054];

D. Ida, K.Y. Oda and S.C. Park, Anisotropic scalar field emission from TeV scale black hole,

hep-ph/0501210; Rotating black holes at future colliders, II. Anisotropic scalar field

emission, Phys. Rev. D 71 (2005) 124039 [hep-th/0503052];

C.M. Harris and P. Kanti, Hawking radiation from a (4+N)-dimensional rotating black hole,

Phys. Lett. B 633 (2006) 106 [hep-th/0503010];

E. Jung, S. Kim and D.K. Park, Condition for the superradiance modes in

higher-dimensional rotating black holes with multiple angular momentum parameters, Phys.

Lett. B 619 (2005) 347 [hep-th/0504139];

G. Duffy, C. Harris, P. Kanti and E. Winstanley, Brane decay of a (4+N)-dimensional

rotating black hole: spin-0 particles, JHEP 09 (2005) 049 [hep-th/0507274];

M. Casals, P. Kanti and E. Winstanley, Brane decay of a (4+N)-dimensional rotating black

hole, II. Spin-1 particles, hep-th/0511163.
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Erratum

The power per d.o.f. of fermions, Equation (6.4), is misprinted. The correct value [15] is:

Ps=1/2 = 1.6 × 10−4 r−2
+ . (6.4)

The D = 7 and D = 9 graviton entries in tables 1–4 are also misprinted. Tables 1–4 should

read, respectively,

D 4 5 6 7 8 9 10 11

Scalars 1 8.94 36 99.8 222 429 749 1220

Fermions 1 14.2 59.5 162 352 664 1140 1830

Gauge Bosons 1 27.1 144 441 1020 2000 3530 5740

Gravitons 1 103 1036 5121 2 × 104 7.1 × 104 2.5 × 105 8 × 105

Table 1: Total radiated power P into different channels. The first three rows correspond to fields

propagating on the brane. The last row gives the power radiated in bulk gravitons normalized to

the four-dimensional case.

D 4 5 6 7 8 9 10 11

Scalars 1 1 1 1 1 1 1 1

Fermions 0.55 0.87 0.91 0.89 0.87 0.85 0.84 0.82

Gauge Bosons 0.23 0.69 0.91 1.0 1.04 1.06 1.06 1.07

Gravitons 0.053 0.61 1.5 2.7 4.8 8.8 17.7 34.7

Table 2: Fraction of radiated power per d.o.f. normalized to the scalar field. The graviton d.o.f.

(number of helicity states) are included in the results.

D 4 5 6 7 8 9 10 11

Scalars 1 1 1 1 1 1 1 1

Fermions 0.37 0.7 0.77 0.78 0.76 0.74 0.73 0.71

Gauge Bosons 0.11 0.45 0.69 0.83 0.91 0.96 0.99 1.01

Gravitons 0.02 0.2 0.6 0.91 1.9 2.5 5.1 7.6

Table 3: Fraction of emission rates per d.o.f. normalized to the scalar field. The graviton result

includes all the helicity states and counts as one d.o.f.
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D 4 5 6 7 8 9 10 11

Scalars 6.8 4.0 3.7 3.6 3.6 3.5 3.3 2.9

Fermions 83.8 78.7 75.0 72.3 69.9 66.6 61.6 53.4

Gauge Bosons 9.3 16.7 20.0 21.7 22.3 22.2 20.7 18.6

Gravitons 0.1 0.6 1.3 2.4 4.2 7.7 14.4 25.1

Table 4: Percentage of power going into each field species for the minimal U(1)× SU(2)× SU(3)

standard model with three families and one Higgs field above the spontaneous symmetry breaking

scale. The four-dimensional results are taken from ref. [15] and the higher dimensional results for

fermions and gauge fields are taken from ref. [9].
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